Digit Code	tal Signal Processing (April/May-2013, Set-2) JNTU-Anantapur
	III B.Tech. II Semester Regular & Supplementary Examinations April/May - 2013 DIGITAL SIGNAL PROCESSING (Common to EIE, E.Con.E, ECC and ECE)
Time	: 3 Hours Max. Marks: 70
	Answer any FIVE Questions
	All Questions carry Equal Marks
1	
<u>1.</u>	
2.	Determine the DFT of a sequence $x(n) = \{1,1,0,0\}$ and check the validity of answer by calculating
	IDFT.
3.	Explain radix-2 DIT-FFT algorithm in detail. Explain how calculations are reduced. (Unit-III, Topic No. 3.1)
4.	If H(z) has zeros at $z_1 = 0.707 + j0.707$, $z_2 = 2$, determine the lowest order degree H(z) that has linear phase. Also realize it in direct form-II and in cascade form.
5.	(a) Explain the features of Butterworth approximation.
	(b) Discuss the location of pole for Butterworth filter.
6.	Discuss the type I and II frequency sampling methods of FIR filter design.
7.	The signal x(n) is decimated by N to obtain the signal y(n). Sketch X(F) and Y(F) over $-3 \le F \le 3$ for the following cases.
	(i) $X(n) = sinc (0.4 n) N = 2$
	(ii) $X(F) = tri(4F)$ $N = 2$
	(iii) $X(F) = tri(6F)$ $N = 3.$
8.	(a) Discuss about spectral analysis of non-stationary signals.
	(b) Discuss about frequency response of typical band limited channel.